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Abstract: This paper intends to be a methodological contribution to the 
comparison of results obtained inventory management through formal modeling 
and those implemented through simulation and optimization processes, 
particularly using genetic algorithms (evolutionary). The development focuses 
primarily on backorder situation for models of reorder point, periodic review and 
(S, s, R) where the demand per unit time and lead time are normal distributions. 
The analyses are realized for a set of heuristics applied to the management of a 
durable fast moving item. The main limitations in modeling and optimization of 
numerical nature are refereed.

Key-words: Heuristics, simulation, optimization, evolutionary algorithms, 
reorder point policy, periodic review policy, (S, s, R) policy.

1. Introduction

The importance of policies adjusted to inventory control are well known, 
being extensive the bibliography dealing more or less this particular subject. 
The contributions made by Hadley (1963), Silver (1998), Zipkin (2000) and more 
recently Muckstadt (2010) were the background for sustained and broad range 
of developments. It can be considered extremely practical in applications and 
on the other the work of mathematical nature more or less abstract without 
immediate prospect. Models, by their nature, are representations or abstractions 
of real operating environments, perhaps not capturing all the factors involved 
or possibly pondering them in a less adjusted basis. This work intends to be a 
methodological contribution to the comparison between the results obtained 
through simulation particularly using genetic algorithms (evolutionary) 
and optimization analytic processes. The development focuses primarily on 
backorder situations for models of reorder point, periodic review and (S, s, R) 
with normal distribution to the demand per unit time and lead times. The paper 
begins with a brief description of the main heuristics most commonly used in 
inventory control, highlighting the main assumptions introduced during the 
modelling process. In a second point the most relevant characteristics in the 
simulation optimization process are described, in general the genetic algorithms. 



In a third point the scenario and the input parameters for the empirical work 
are established, being presented the results for numerical optimization. In a 
fourth point, policies of reorder point (s, Q), periodic review (S, R) and (S, s, 
R) are modelled in ExtendSim® environment. The importance of the Optimizer 
block, the operating conditions and the length of the simulation run periods are 
described. Finally, in a fifth point, the most relevant results are presented and 
synthesizing the most important conclusions.

This paper describes part of the research undertaken in this specific context 
and which supports the current developments with concrete applications to the 
area of Supply Chain Management, Lopes (2014).

2. Heuristics in inventory control

Policies for inventory control in a situation of continuous demand can 
generally be classified into three broad categories: That of reorder point, periodic 
review and with mix characteristics (S, s, R) integrating particularities of the 
previous two. Each policy has advantages and disadvantages under the practical 
point of view, which may lead the manager to choose preferably by one, Lopes 
(2014). Out as most relevant, among others, the size of buffer stocks, the possibility 
of consolidation of orders, more or less difficulty in operation, etc. 

2.1 Model of reorder point

This policy is based on the fact that an order is placed for Q units when 
the stock on hand reaches the order point s. The graphical representation of its 
operation is shown in Figure 1.

Nível de Stock

Ponto de 
Encomenda

Tempo de entrega

Stock de segurança

Quantidade a
encomendar

Tempo

Figura 1 - Reorder Point Policy
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By admitting that the distribution of demand per unit time and lead times 
are normal and that the modelling parameters are defined by:

v → Unit variable cost of the item;
A → Fixed ordering cost;
B2v → Cost per unit short;
r → Carrying charge;
D → Average demand per unit time;
σD → Demand per unit of time standard deviation;
L → Average replenishment lead time;
σ → Lead time standard deviation.

It is possible to obtain the cost per unit cycle time:

Kt = +(OH)vr + (1)AD
Q Q

B2vD(BO)

where OH is the average amount of stock on hand and BO the average 
number of backorder per cycle. 

Note that OH can be expressed as a function of inventory stock position by 

OH = Inventory average stock position (PS) - Average stock on order (SE) 
– BO (2), but:

PS = [(Q + s) + s] (3)
1

2
and:

SE = Q + s - (s - xL+Q) (4)

where xL = LD is the mean demand during the lead time. Then:

(OH) =     + s - xL + (BO) (5).

Note, as mentioned by Muckstadt (2010) that only one backorder per unit 
time is admitted. The short units per BO can be determined by:

(x - s)f(x)dx (6)∫
∞

s

where f(x) is the distribution of demand during the lead time, with mean 
and standard deviation respectively equal to:

xL = LD (7)  e  σL = √Lσ2 + σ2D2 (8).

But, according to Silver (1998):

(x - s)f(x)dx = σLGu(K) (9)

^

^Q
2

^
D

^

∫
∞

s
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√2p
1

σL

s - xL
^

u2

2
-

where:
Gu(K) =   (u - k)        e     du (10)

with:

K = 
Thus are obtained

Kt =        +[    + s - xL+ σL Gu(k)]vr +           σL Gu(k) (11).

Another approach is to assume that

E(OH)        + s - xL  (12)

Whereas the average backorder quantity is very small relative to the average 
stock on hand and therefore negligible. 

The expression that results in , will be

Kt =        +[    + s - xL]vr +           σL Gu(k) (13)

It should also be noted that in many practical situations the values set for 
the policy of reorder point admit for the calculation of s that:

s = xL - k σL (14)

where k is an empirical value given by the standard cumulative normal 
distribution. Q is in turn determined by the expressions minimizing costs in 
deterministic demand models situations or through any other approaches.

2.2 Periodic review model

The periodic review policy is based on the observation of the stock on hand 
of R in R time units (review period), ordering the amount needed to achieve 
a level pre-specified S. The graphical representation of the policy is shown in 
Figure 2.
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S

Encomendar Encomendar Encomendar Encomendar

Figura 2 - Periodic Review Policy

When considering the conditions set out above for the previous case and 
that M is the fixed cost of ordering and review, R is the review period

xL+R = (L + R)D (15)  and  σL+R = √(L+R)σD + σ2D2 (16)

Where xL+R is the average demand during the lead time and review period 
and σL+R is the standard deviation of demand in the same period. It is then 
possible to obtain the expression of the cost per unit cycle time:

Kt =      +[     + S - xL+R+ σL+R Gu(k)]vr +        σL+R Gu(k) (17)

When considering the conditions to those observed in the reorder point it is 
possible to obtain:

 
Kt =      +[     + S - xL+R]vr +        σL+R Gu(k) (18)

It is important to note that modelling in any of the policies (reorder point or 
periodic review) assumes that there are no crossing orders, getting the order in 
the sequence which they are realized.

As in the previous case it is usual to use a value of S computed by:

S = xL+R + k σL+R (19)

being the value of R determined by several methods.

2.3 Model (S,s,R):

This model is a hybrid of reorder point and the periodic review. In this case, 
the stock on hand is observed every R units of time, in case it lies between two 
pre-specified parameters s and S is not performed any order, if lower s order to 
achieve the level S. The policy operation is shown in Figure 3.

2^

^

M
R

DR
2

B2v
R

^

M
R

DR
2

B2v
R

^

^



190	 International Journal of Engineering and Industrial Management 6

José Álvaro Assis Lopes e José Manuel Loução de Matos

S

Tempo
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Figure 3 - Operation of the policy  (S,s,R)

The simultaneous determination of the three parameters is referred by Silver 
(1998) and Muckstadt (2010) as complex, suggesting the use of heuristics as the 
best suited process. The procedure developed by Wagner (1975) is recommended 
in this case and  it will be briefly described in the following paragraph.

2.4 Numerical optimization
2.4.1 Reorder point model

By differentiating equation (11) in order to the variables Q and s can be 
obtained by considering that:

=        = 0,

   

2D[A + sLB2vGu (k)]

and:
pu≥ (k) =                  (21)

Where is the complement of the cumulative function of the standard normal 
distribution. The optimum values for Q and s are found successively iterating 
between (20) and (21) in order to obtain a degree of adjusted precision. The 
suggested approach is identical to the previous procedure, but now when using 
equation (13) an expression similar to (20) is obtained, coming to:

∂Kt/∂s = 0 a probabilidade pu≥(k) =          (22)

As reported by Muckstadt (2010), the convergence of the algorithm in both 
situations is verified, because Kt is convex in the area that contains the optimal 
solution for most distributions of lead time demand.

∂Kt

∂Q
∂Kt

∂s

Q =√ vr

Qr
rQ + B2D

Qr
B2D
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2.4.2 Periodic review model

In this particular case there follows a different procedure given the complexity 
presented to ∂Kt /∂R. In this circumstance, it is preferable to use equally spaced R 
values for the calculation of Kt (through (17)) for a pre-specified S obtained using the 
expression considering that ∂Kt /∂S = 0:

pu≥ (k) =              (23)

Thus electing the values of R and S that lead to a minimum . A second 
approach would be using the expression (18) and admitting that:

pu≥ (k) =        (24)

The conditions of convexity of Kt are verified in accordance with the 
observation considered for the reorder point.

2.4.3 Model (S,s,R):

The heuristic developed by Wagner (1975) can be described for a given pre- 
set revision period through the following steps:

1. Determinar Q = √2AD/vr

2. Calcular u, tal que: G(u) = 

3. Se Q>1.5D, considerar:

s = (L+1)D + usD√L+1 (25)

S = s + Q (26)

otherwise go to 4.

4. Determine v, such that: Φ(v) = 

Onde Φ(v) is the cumulative function of the standard normal distribution 
for the argument v.

Admitting that:

W = min (u,v) 
s = (L+1)D + WsD√L+1 (27)
S = (L+1)D + min{usD√L+1 + Q; vsD√L+1} (28)

rR
rR + B2

rR
B2

B2vsD√L+1
vrQ

B2

B2 + r



192	 International Journal of Engineering and Industrial Management 6

José Álvaro Assis Lopes e José Manuel Loução de Matos

3. Optimization in simulation

The optimization applied to simulation is particularly complex for a number of 
reasons which are referred for example by Banks (2010) and Law (2007).

•	The results of simulation models are random variables, so we can speak 
only in probability of choosing an optimal selection of input parameters. In 
principle this situation may be overcome by performing a high number of 
runs for each tested solution, significantly reducing the variance of the result.

•	The algorithms to be used shall ensure that they are inherently asymptotically 
consistent, i.e., it is possible to achieve an approximation of the optimal 
value as the number of runs increase. Beyond this fundamental property its 
operational structure will contain search strategies associated to the random 
component of the situation.

Currently, as referred by Fu (2002), the simulation optimization processes can 
generally be broken down into two phases:

•	 Generation of candidate solutions;
•	 Evaluation of solutions.

In fact, the processes of optimization software packages developed in the 
simulation are based almost entirely on meta heuristics and predominantly 
evolutionary algorithms (genetic), that iterate a family of solutions rather than a single 
point, even incorporating some memory in structure. A new solution (new offspring) 
is achieved by randomly modifying individuals from the parent population. This 
operation is usually called mutation materialized by the addition of reduced normal 
random variables. In some situations recombination (crossover) is employed so that 
two parents are combined to generate a new solution, for example, by selecting the 
first half of the first parent factors and the second half of the second. The election 
of parents as reported by Buchholz (2005) is implemented in those presenting high 
probability of better performance and obtained with low computational effort. 
Assessment is doing through a specific objective function.

The statistical process of searching and selection of the solutions is based in 
most cases on the Rinott (1978) procedure, which is developed in two phases.

An indifference-zone parameter d*>0  is previously defined, such that the 
decision maker does not care to choose the solution k - 1 if the means μk and μk - 1 
verify μk - μk - 1 < d*. It is admitted that μ1 ≤ μ2 ≤ ... ≤ μk. 

The process ensures that the best element is selected with a predetermined 
probability P*, with 1/k < P* < 1 since μk - μk-1 < d*.

Consider then n0 as the sample size of each solution. In the first phase sample 
means Xi(n0) and variances si

2(n0) are calculated such that

Xi(n0) =      ∑ Xij (29)  and  si
2(n0) =      ∑ (Xij - Xi (n0))

2 para i = 1,...,k (30). 
1
n0

1
n0

n0 n0

i=li=l
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Based on the initial number of replications and the sample variances si
2(n0) 

obtained in the first phase, the number of additional simulation replications for 
each individual in second stage is Ni - n0 with

Ni = max{n0,[(    ) si
2(n0)]} (31).

Where h=h(k,P*,n0) is a constant which solves the Rinott integral.
From the results of the first and second phases new means are determined, 

such that

Xi =      ∑Xij (32)

being elected the solution with higher (lower) mean.
This procedure was subsequently modified in order to make it more 

efficient on the computational point of view, Lopes (2014), see for example the 
contributions made by Boesel (2003) and Buchholz (2005). For a state of art about 
this subject is recommended Lee (2013). 

4. Empirical scenarios, modelling parameters and numerical optimization

The empirical scenario baseline uses a durable item with a unit price of 
100 monetary units (m.u)/unit (v), with a demand for unit of time (day) of  220 
units/day (D) and a standard deviation of 28 units (sD). The lead time identically 
follows a normal distribution with mean 5 days (L) and standard deviation 1 
day (s). The fixed order cost was estimated in 3 m.u/order. The annual carrying 
charge (r) has an average value in range referred by Muckstadt (2010), 22.5 %. The 
estimated cost of stockout per short unit was approached by the methodology 
described by Anderson (2006) which admits an impact in the short and medium 
term not only in selling the product but in future orders. Used the average results 
obtained by the authors for a sample of 13816 items, and adjusted the price for 
the product in question (B2v=0,29 m.u./short unit). In the case of review cost, 
the value was taken to 3.1 m.u a little higher than A. Table 1 summarizes the 
parameter values to be used in empirical scenario.

Table 1
Parameters of Empirical Scenario

Item
Daily mean demand (D) 220

Standard deviation of daily demand (σD) 28

Lead time mean (L) 5

Lead time standard deviation (σ) 1

h
d*

2

1
Ni

ni

j=l
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Costs
(u.m)

Unitário (v) 100

Fixed ordering (A) 3

Review + Order (M) 3.1

Daily Holding (vr) 0.062

Stockout (B2v) 0.29

Regarding the numerical optimization the steps were followed as described 
in 2.4.1, 2.4.2 and 2.4.3, yielding the results shown in Table 2. An additional set of 
testing scenarios is further defined and clarified as well as the numeric equations 
used to calculate the parameters of each of the policies.

Table 2
Empirical Scenarios

Scenario Characteristics Parametric Determination
(Equations) s Q R S

PE1 (20);(21) 1283 279 - -

PE2 (20);(22) 1183 368 - -

PE3 (14);(20) 1393 209 - -

PE4 Q = √(2AD/vr); (21) 1348 146 - -

RC1 (17);(23) - - 2.9 1668

RC2 (18);(24) - - 2.2 1567

RC3 Q = √(2MD/vr); R=Q/D; (19) - - 0.67 1543

RC4 Q = √(2MD/vr); R=Q/D; (23) - - 0.67 1409

M1 R(RC1)* - Wagner algorithm 1313 - 2.9 1384

M2 R(RC3) - Wagner algorithm 1313 - 0.67 1384

M3 R(RC1); s=S-Q(PE1); S(RC1) 1389 - 2.9 1668
*The value of R used was that employed in RC1 scenario, etc.

5. Simulation Models

The simulation models of the three policies were developed in ExtendSim8® 
environment, with the structures shown in Figures 4, 5 and 6. 
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Figure 4 - Simulation Model for Policy (s,Q)

Figure 5 - Simulation Model for Policy (R,S)
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Figure 6 - Simulation Model for Policy (S,s,R)

The general operating characteristics and features of each block can be 
found in ExtendSim User Guide (2007). It is however relevant to mention the 
following singularities:

•	Only blocks of libraries Value and Plotter were used given the specificity 
of continuous simulation applied;

•	There was no particular care on using sample sizes of smaller size, since 
the computational time is not a restrictive element during the empirical 
experimentation. This allowed to largely neutralize the initial transient 
conditions;

•	In all structures the Statistics (Stats) block was introduced allowing 
exporting the results to an EXCEL spreadsheet facilitating the subsequent 
statistical treatment (in Excel or SPSS).

The Optimizer block was introduced in each structure. It uses an evolutionary 
algorithm (genetic) with characteristics similar to those described in Section 3 as 
referred by Zvirgzdina (2013). Amplitude ranges of variation were established 
for any of the parameters, large enough to present no restriction on determining 
the best solution in each case. Note, however, that imposed in the case of model 
(S, s, R) the condition S ≥ s. The criterion used was the minimization of the total 
average daily cost (order / revision + order, holding and stockout). Still admitted 
a dimension of population of solutions size 10, with 100 the maximum number 
of replications to consider a solution (the block starts the optimization process 
using one sample only, this was incremented in subsequent generations, until the 
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maximum). The optimization concluded after analyzing 1000 generations. The 
procedure and parametric optimization for each policy was repeated 20 times 
and for each of the best solutions found was materialized 30 replications with a 
size of 104 days for which the total mean value was calculated. This procedure 
followed by selecting the five best average results by performing 60 replications 
each with 104 days. The election progressed through this procedure for sets of 3 
and 2 solutions. Finally the one with the lowest total mean value was selected. 
Note that a direct comparison of means is acceptable given the low variance of 
their estimators, taking into account not only the large number of replications 
but also the size of each one. This is in fact the same principle followed by Rinott 
(1978). For the three policies characterized by the parameters given in Table 2, 
120 replications of the cited same size were made.

6. Analyses of Results

As mentioned in point 4, 20 experiments for each of the policies in evaluation 
(reorder point, periodic review and (S, s, R)) using the evolutionary algorithm 
included in the Optimizer block were made. Table 3 summarizes the main 
characteristics of the solutions.

Table 3 - Optimization Using the Evolutionary Algorithm

Policy Solution mean value Solution Standard deviation
Convergence (%)

Máximum Minimum

(Q,s) 57.21 1.58 99.44 94.30
(R,S) 41.90 1.11 99.55 98.21

(S,s,R) 51.84 8.79 99.95 97.25

We notice that the solutions are closed, as either the standard deviation or 
the degree of convergence are consistent indicators of this circumstance. Note that 
the degree of convergence measures the relative variation (among the population 
of the top ten elected solutions) between the maximum and the minimum of 
average total cost of each policy. The policy (S, s, R) presented, however a higher 
variability, a fact that is not strange given the larger number of parameters to be 
estimated by the algorithm. This peculiarity is salient in Figures 6, 7 and 8 where 
is shown the variability of the estimates of the parameters in these experiments. 
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Figure 6 - Variation in Parametric Optimization / Policy (Q,s)

Figure 7 - Variation in Parametric Optimization / Politica (R,S)

Figure 8 - Variation in Parametric Optimization / Politica (S,s,R)
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In the first two policies there is a marked stability, as noted; while in (S, s, R) 
s and S parameters show significant changes for minor variations on mean total 
unit cost. Then proceeded to the election of the parameters that had lowest average 
cost in accordance with referenced in Section 4. This results are shown in Table 4.

Table 4 - Parametric Optimization via Simulation
Policy Parameters Daily Mean Cost

(Last selection)Q s S R

(Q,s) 245 1132 - - 49.58

(S,R) - - 1197 4 37.44

(S,s,R) - 913 1168 4 42.36

It should be noted the numerical approximation of the parameters (S, s, R) 
and those observed for (s, Q) and (S, R) given the natural hybrid characteristics 
of that policy. In order to statistically compare the performance of each of the 
policies tests t Student for differences of means for each model was done (120 
runs for periods of  104 days). The results are shown in Table 5.

Table 5 - Student’s t test for Policies Difference of Means
Pair Confidence interval (95%) Linear Correlation Pair

Upper Limit Lower Limit

(Q,s)-(R,S) 12.39 7.44 0.03

(Q,s)-(S,s,R) 10.77 4.81 -0.10

(R,S)-(S,s,R) 0.75 -4.99 0.08

When observing the table we can infer that the policies of periodic review 
(S, R) and (S, s, R) outperform the (Q,s), not being possible however to establish a 
statistical degree of preference between policies (R,S) and (S, s, R). Heuristics with 
the parameters specified in Table 2 were simulated as stated through 120 runs 
each with duration of 104 days. The results for each heuristic were compared by 
Student’s t test. Analyzing these results it can be concluded the best performance 
of the heuristics PE1, PE2 and M1 being followed by RC1, RC2 and M3. The 
remaining results show much lower performance and even PE3 and PE4 do 
not resist to transient initial conditions being in permanent loss. These results 
are most easily observed using cluster analysis. The method of hierarchical 
aggregation of Ward (1963), and the Euclidean distance were applied, verifying 
an adjusted dimension for a set of 6 clusters. This result is shown in Table 6.



200	 International Journal of Engineering and Industrial Management 6

José Álvaro Assis Lopes e José Manuel Loução de Matos

Table 6 - Heuristics Means Cluster Analysis
PE1 PE2 PE3 PE4 RC1 RC2 RC3 RC4 M1 M2 M3

1 1 2 3 4 4 5 6 1 6 4

Mean 
Value 
Total 
Cost 

(diary)

55.3 68.66 16347 107591 89.4 118.41 228.24 220 76.67 220.91 91.02

Note that the heuristics are presenting more elaborate theoretical approaches 
that lead to better results, verifying that the estimates supported by most empirical 
procedures lead to significantly higher costs, it should be emphasized that the 
heuristics lead to results different from those observed for optimization, since 
the best policy is not identical in both cases. Thus it is important to observe the 
estimated average costs for stockout and holding for the three heuristics that 
comprise the cluster 1 and 4, those that come from the optimization and obtained 
through the numerical approximations. In this circumstance 120 runs of size 104 
days were performed for each situation. The results obtained are shown in Table 7.

Table 7 - Stockout and Holding Costs
Policy Solution Parameter Simulation Approach Numerical approach

Stockout 
costs

Holding 
costs

Stockout
costs

Holding 
costs

Reorder 
point
(Q,s)

Obtained by Evolutionary 
Algorithm

Q=245
s=1132

13.08 34.14 24.89 64.33

Obtained Numerically 
(PE1)

Q=279
s=1283

6.12 48.05 6.29 21.70

Periodic
review
(R,S)

Obtained by Evolutionary 
Algorithm

R=4
S=1197

21.42 20.06 56.68 27.21

Obtained Numerically 
 (RC1)

R=2.9
S=1668

9.10 75.80 13.10 23.56

(S,s,R) Obtained by Evolutionary 
Algorithm

R=4
s=913
S=1168

23.04 16.78

Obtained Numerically 
(M1)

R=2.9
s=1313
S=1384

23.24 52.79

Analyzing the results of Table 7 it appears to be realized that the simulation 
results for the parametric estimates obtained via numerical and evolutionary 
algorithm for the holding cost are invariably significantly higher than on the 
second case, which leads to the inference that models based on heuristics lead to 
conservative policies with great part of stock without rotation. This has an obvious 
result, for the particular cases of political (Q, s) and (R, S), lower stock out costs. This 
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condition is however less apparent in politics (S, s, R). The result may find support 
when considering, in numerical approximations, the existence of a backorder 
per cycle and perhaps the non-existence of cross orders, which will significantly 
reduce the variance of demand during the lead time, as stated Bischak (2013). It is 
interesting to notice, for PE1 and RC1 heuristics, the closeness of estimates of the 
stock-out costs obtained for the numerical solution when using simulation and that 
achieved by the formal model, thereby allowing concluding the necessity of a more 
consistent modelling for the inventory holding costs.

6. Conclusions

The work presents a methodological basis for comparing the performance 
of heuristics in the specific context of inventory management. The empirical 
basis of experimentation corresponded to a durable and fast moving item, with 
mean particularities of cost, demand and lead time. In this circumstance interests 
synthesize the main conclusions:

•	Evolutionary algorithms are particularly adapted in simulation optimization, 
leading to a consistent set of solutions particularly in what convergence 
concern. For all three variants tested there is a higher stability of the estimated 
parameters to the policies (Q, S) and (R, S), finding an increase in variability 
for the (S, s, R) option. This fact naturally infers that the stability of parameter 
estimation in simulation, in the specific context of inventory management, is 
reduced with some meaning as far as is enlarged the number of parameters 
to be estimated.

•	That for an item in the above specified conditions and preferably using as 
criteria the cost per unit cycle time is statistically possible to infer that the 
periodic review policy and (S, s, R) have a higher performance then (Q, 
s). The preference, however, between models (R, S) and (S, s, R) could not 
statistical be established.

•	The empirical work that led to eleven heuristics described earlier is clear, 
that those with more consistent theoretical supports led to better results. 
The most empirical procedures led to significantly higher costs and often 
are divergent with the initial transient conditions. This fact indicates in this 
case the need for a finer adjustment (tuning) of the parameters, possibly via 
simulation.

•	The selection of policies using the estimators obtained numerically and 
those obtained through simulation optimization are diverse. The situation 
is due to formal models overestimate the operational parameters leading to 
conservative policies with excess stock without rotation. This fact is evident 
as a result, especially for policies (Q, s) and (R, S), where the stockout costs 
are lower. This finding is justified in considering the numerical modelling, 
the approach of having a backorder per cycle or a nonexistence of crossing 
orders which overestimates the holding costs. This allows us to conclude the 
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necessity of more consistent modelling for these costs.
•	The alternative to numerical estimate parameters of inventory management 

is the use of complementary techniques of simulation and optimization as 
presented in this work, with obvious cost benefits of the policy performance.
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